Nonclinical Pharmacology of Nebulized KB407 for the Treatment of Cystic Fibrosis

Necropsy

48 hours

Parry T, Zhang P, Reitze N, Banerjee S, Sarma N and Krishnan S

Krystal Biotech, Inc., Pittsburgh, PA

Introduction

- Small-molecule modulators targeting specific classes of cystic fibrosis transmembrane conductance regulator (CFTR) protein dysfunction have been the focus of recent drug development, thereby targeting only a subset of the CF population^{1,2}
- Regrettably, no mutation-agnostic corrective therapy is approved
- To this end, KB407, a replication-defective gene therapy vector encoding full-length human CFTR, has been engineered for the treatment of cystic fibrosis (CF)
- Previous in vitro and ex vivo studies demonstrated KB407 transduction efficiency and effector expression, localization, and activity in 2-D cell culture of primary CF patient small airway epithelial cells and in 3-D cell culture of CF patientderived intestinal organoids (PDOs)³
- Here, KB407 was investigated to determine whether it is safe for, and amenable to, non-invasive inhaled administration upon single and repeat dosing, including in a good laboratory practice (GLP) toxicology study in non-human primates (NHPs)

Materials and Methods

• Test Article - KB407, Krystal Biotech, Inc.'s proprietary replication-incompetent, non-integrating HSV-1-based vector encoding two copies of full-length human CFTR

Results: In vivo Proof-of-Concept Study of KB407 Inhaled Administration

Table 1. Experimental design for KB407 nebulization in immunocompetent mice

Treatment	Dose Duration (minutes)	Mouse strain	Number
Vehicle	60	C57BL/6 mice	4
KB407	60	C57BL/6 mice	4
KB407	60	Cftr ^{tm 1Unc} Tg(FABPCFTR)1 Jaw/J mice (<i>CFTR-</i> /-)	4

Figure 1. Transduction and human CFTR expression in the airways of wild-type and CFTR-/- mice following nebulization of KB407

Data are presented as the average of two tissue samples (two replicates/tissue) ± standard error of the mean (SEM)

• KB407 can be effectively aerosolized and capably infects relevant airway epithelia after nebulization - KB407 was below the limit of detection in all blood samples tested

Conclus	ions
\mathbf{A}	Inhalation of nebulized KB407 efficiently transduces airway epithelial t
	No significant toxicity or systemic vector distribution was observed in
\rightarrow	The NOAEL was determined to be the high dose of KB407 due to the la
\succ	Taken together, these data provide strong support for the potential of

- Figure 2B shows BALF harvested 48 hours post infection.
- No obvious signs of immune cell invasion, fibrosis, or necrosis were detected in any KB407-dosed tissues, as compared to vehicle- treated mice, indicating the safety of the vector after nebulization
- No significant differences in cell infiltration into the lungs were noted between vehicle and KB407 administration groups

Results: In vivo Tolerability and Biodistribution of Repeat-Dose KB407 Inhaled Administration

Table 2. Experimental design for KB407 repeat-dose nebulization: tolerability and biodistribution in an NHP

Time point	Treatment	Dose Duration, min	St
Day 1	Vehicle	90	Vehicle KB407 (low dose)
Day 5	KB407	54	Day 0
Day 17	KB407	90	Blood Collections

Figure 3. KB407 biodistribution and human *CFTR* expression in NHP tissues 48 hours following repeat dosing

- KB407 capably infects airway tissue of NHPs and expresses its encoded human transgene
- All blood samples were below the limit of detection for the assay, suggesting that the vector was restricted to the airways without significant dissemination into the circulatory system
- No abnormal cage-side or clinical observations were noted, and no changes in food consumption or body weight were found during the dosing period, indicating that repeated dosing of KB407 was well tolerated

tissue and directs localized expression of human CFTR in mice and NHPs immunocompetent animals upon single or repeated exposure to aerosolized KB407 ack of impact on the health and well-being of animals in the repeat-dose GLP toxicology study inhaled administration of KB407 as a broadly applicable gene therapy for the treatment of CF

KB407 **Tissue Harvest**

Results: Repeat-dose GLP Toxicology Study Table 3. Experimental design for KB407 repeat-dose nebulization: NHP GLP toxicology study

Group	Dose Duration, min	Average Dose Deposited in Lungs (PFU/administration)	Dosing Days		tudy	Recovery (4 Weeks)				
				М	F	Necropsy Day	М	F	Necropsy Day	
Air	90	-	1, 8, 15	3	3		-	-		
Vehicle	90	-	1, 8, 15	3	3		2	2		
KB407 (low)	18	1.81E+8 (M)	1, 8, 15	3	3	16	C	2	10	
		2.33E+8 (F)					Ζ	2	40	
KB407 (high)	90	1.43E+9 (M)	1, 8, 15	3	3		C	2		
		2.11E+9 (F)					Ζ	2		
M. male: F. female.										

Table 4. Findings from toxicity assessment of KB407 repeat dose

Treatment Group	Macroscopic ^a		Microscopic		Systemic ^b		Pulmonary Function ^c	
	Main Study	Recovery	Main Study	Recovery	Main Study	Recovery	Main Study	Recovery
KB407 (low)	None	None	 Mild mononuclear or mixed cell infiltrates in lungs^d Minimal to mild neutrophilic infiltration of lumen in nasal turbinates^e Compared to main study findings, infi reduced in incidence ar severity 	Compared to main study findings, infiltrates	None	None	None	None
KB407 (high)				reduced in incidence and/or severity				

Assessment of toxicity was based on mortality, clinical observations, body weights, body weight changes, and clinical and anatomic pathology. ^aMacroscopic findings include identification of changes at necropsy inclusive of organ weight changes. ^bSystemic adverse findings inclusive of observations of mortality, body weight change, health/well-being. Parameter measurements include breathing rate (breaths/min), tidal volume, minute volume (mL/min) obtained within 24 hours after the first dose, and after last dose (main study dosing period), and within 3 days of recovery necropsy (recovery study period); average of all measurements for the interval was calculated for each animal. ^dBoth low-and high-dose groups; males and females. ^eLow dose, 3/3 females; high dose, 1/3 females; finding not observed in male animals.

- Effects for both doses were considered non-adverse due to the mild severity of findings and the lack of impact on the health and well-being of animals. Mild inflammation observed was determined to be reversible after cessation of dosing
- The no-observed-adverse-effect level (NOAEL) was determined to be the high dose (1.43E+9 to 2.11E+9 deposited plaque-forming units (PFU) in the lungs per administration)

Figure 4. Persistence of KB407-encoded human CFTR transcripts in the lungs of dosed NHPs, as assessed by fluorescence in situ hybridization

• KB407-encoded *CFTR* transcripts are present at both main study terminal phase and recovery phase in the lungs of dosed NHPs (probes specific for human CFTR or monkey glyceraldehyde-3-phosphate dehydrogenase(GAPDH))

References

- 1. Clancy JP, Jain M. Personalized medicine in cystic fibrosis: dawning of a new era. Am J Respir Crit Care Med. 2012;186(7):593-597
- Clancy JP, Cotton CU, Donaldson SH, et al. CFTR modulator theratyping: current status, gaps and future directions. J Cyst Fibros. 2019;18(1):22-34.
- 3. Freedman C, Parry T, Agarwal P, et al. In vitro pharmacology of KB407, an HSV-1-based gene therapy vector, for the treatment of cystic fibrosis. ASGCT 23rd Annual Meeting; May 12-15, 2020.

Krystal

POSTER #541

Acknowledgements/Disclosures

These studies were funded by Krystal Biotech, Inc. PRECISIONscientia provided editorial support.

Krystal Biotech, Inc. would like to thank Lovelace Biomedical for its contributions to the work presented here.

T. Parry, N. Reitze, S. Banerjee, N. Sarma, and S. Krishnan are current employees of Krystal Biotech, Inc.