In Vitro and In Vivo Pharmacology of KB301, an HSV-1-Based Gene Therapy, for the Treatment of Superficial Skin Depressions J. Freedman, P. Zhang, A. Majumdar, P. Agarwal, A. Collin de l'Hortet, T. Parry, and S. Krishnan Krystal

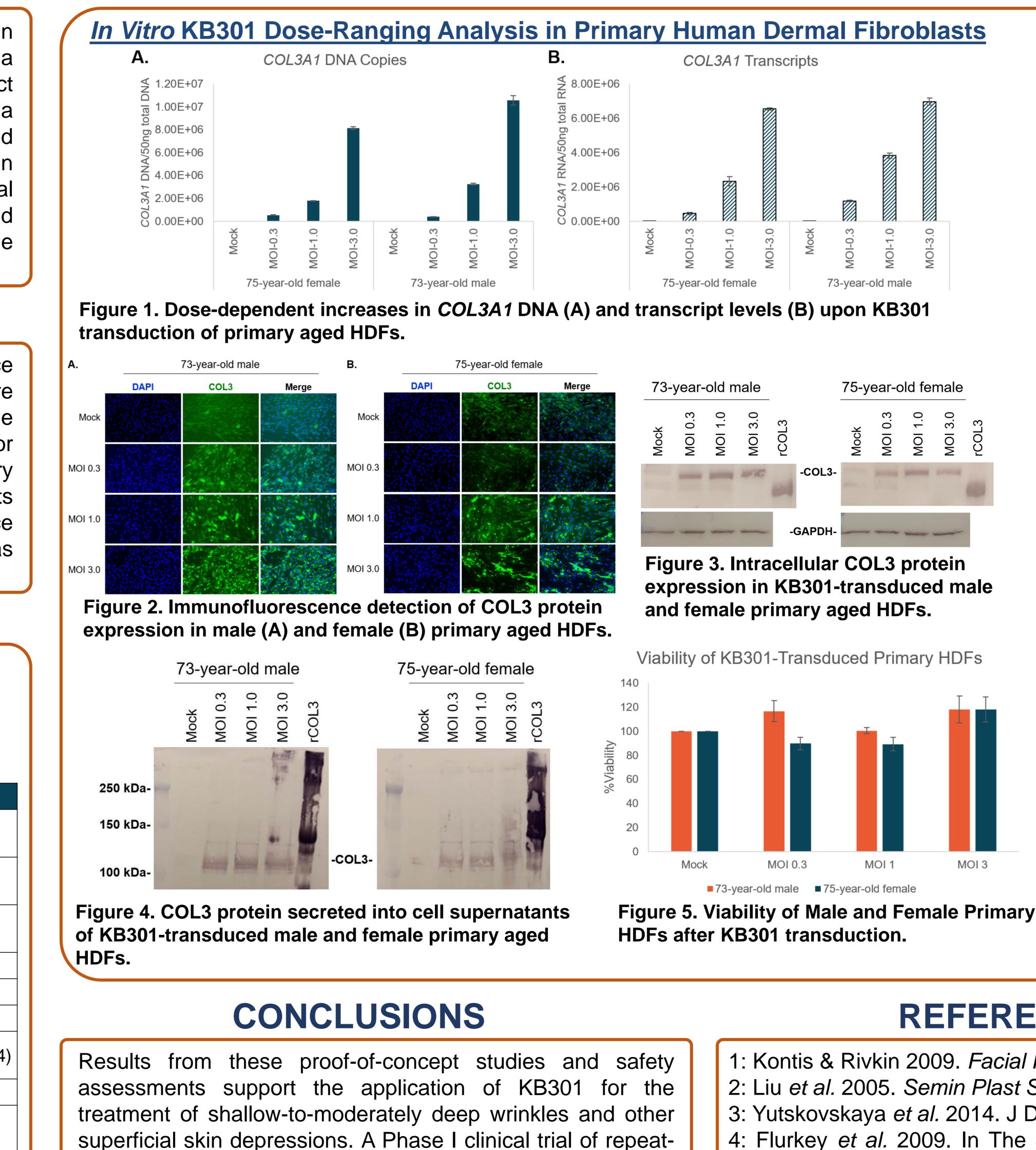
INTRODUCTION

Due to the essential role collagen plays in the process of skin biorejuvenation, and the diminution of dermal collagen being a significant contributor to the aged phenotype, direct and indirect collagen stimulation/supplementation/replacement has been a focus of cosmetic product development¹⁻³. However, directed supplementation of functional full-length human type III collagen (COL3), produced by and secreted from the subject's own dermal cells, has not been explored clinically. To this end, we engineered KB301, a replication-defective HSV-1 gene therapy vector, for the targeted delivery of human COL3.

OBJECTIVES

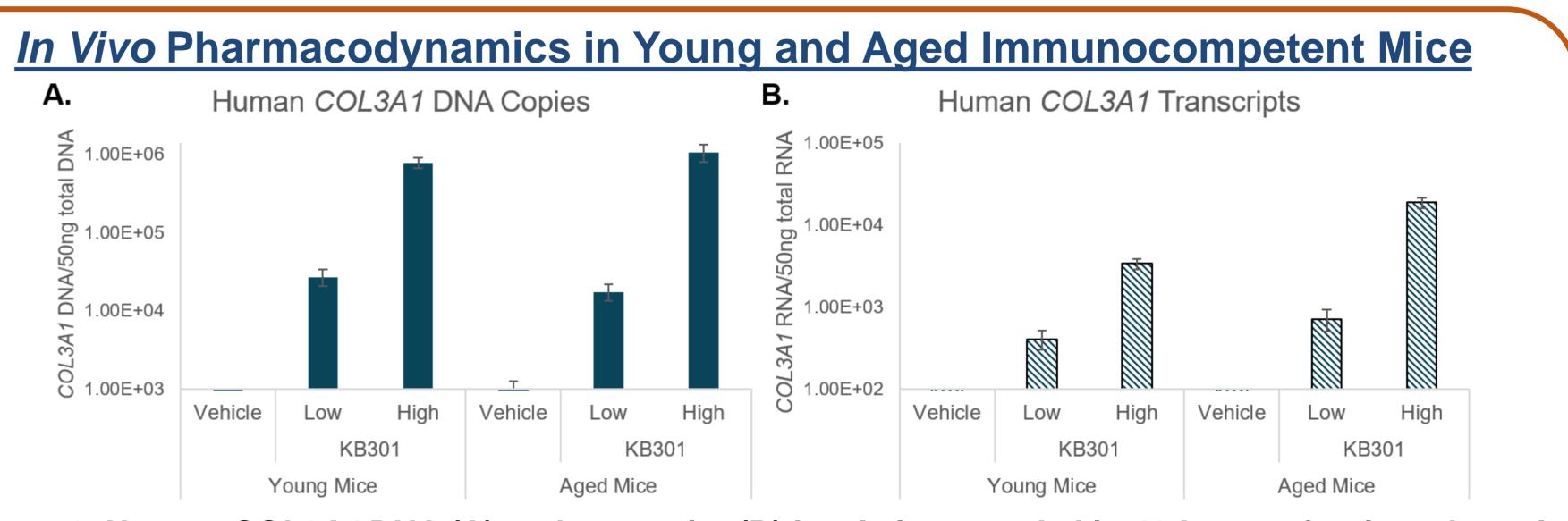
Our preclinical program explored KB301's ability to transduce clinically relevant skin cells and express and secrete mature human COL3 in vitro, as well as to confirm proper tissue localization of the transgene without toxicity or systemic vector distribution in vivo. This preclinical program used, in part, primary human dermal fibroblasts (HDFs) harvested from aged patients (65- to 75-years-old) in vitro and 12- to 13-month-old mice (equivalent to 38- to 49-year-old humans⁴) in vivo as representative models for studying COL3 supplementation.

MATERIALS & METHODS


Test Article

KB301: Krystal Biotech, Inc.'s propriety replication-incompetent, non-integrating HSV-1 vector expressing full-length human COL3.

Table 1. Critical Reagents


Reagent	Application	Source
Primary human dermal fibroblasts	<i>In vitro</i> dose- ranging	Lonza (cat. no. CC-2511)
Anti-human COL3	Western blot/IF (<i>in vitro)</i>	Abcam(cat. no. ab7778)
Anti-rabbit IgG (AP conjugated)	Western blot	Sigma (cat. no. A3687)
Anti-human GAPDH	Western blot	Abcam (cat. no. ab9485)
Recombinant human COL3	Western blot	Abcam (cat. no. ab73160)
MTS assay kit	Cell viability	Abcam (cat. no. ab197010)
Anti-rabbit IgG (AlexaFluor [®] 488 conjugated)	IF (<i>in vitro</i>)	ThermoFisher (cat. no. A11034
Anti-human COL3	IF (<i>in vivo</i>)	Origene (cat. no. AF5810)
Anti-mouse IgG (AlexaFluor [®] 594 conjugated)	IF (<i>in vivo</i>)	Abcam (cat. no. 150120)

dose KB301 is underway (NCT04540900).

Krystal Biotech, Inc. Pittsburgh, PA, 15203

RESULTS

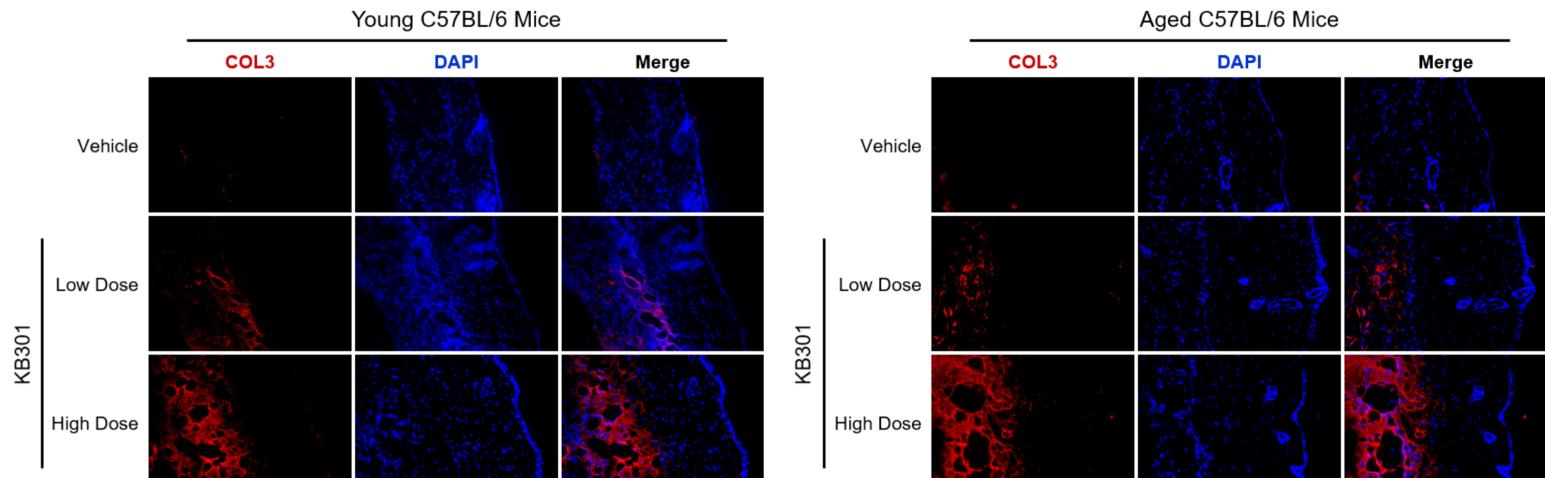


Figure 7. COL3 protein localization 48-hours after intradermal administration of KB301 to young (6-8 weeks old) and aged (13 months old) mice.

Table 2. Human COL3A1 DNA and RNA biodistribution and pharmacokinetics

Test Article	Termination (hours)	Dose Site (genome copies/50ng DNA)	Dose Site (transcripts/50ng RNA)
Vehicle	4	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	24	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	168	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
KB301	4	$2.39 \times 10^{6} \pm 6.97 \times 10^{5}$	$3.64 \times 10^{5} \pm 1.17 \times 10^{5}$
	24	$1.95 \times 10^{5} \pm 5.40 \times 10^{4}$	$2.35 \times 10^{4} \pm 6.10 \times 10^{3}$
	168	$2.21 \times 10^{2} \pm 9.55 \times 10^{1}$	5.63×10 ¹ ±4.08×10 ⁰

All other samples (blood, bone marrow, lymph nodes, testis, brain, liver, lungs, heart, spleen, and kidney) were below the limit of detection (LOD).

REFERENCES

- 1: Kontis & Rivkin 2009. *Facial Plast Surg.* 25 (2): 67-72.
- 2: Liu et al. 2005. Semin Plast Surg 19 (3): 241-50.
- 3: Yutskovskaya et al. 2014. J Drugs Dermatol 13 (9): 1047-52
- 4: Flurkey et al. 2009. In The Jackson Laboratory Handbook
- on Genetically Standardized Mice, 329-331.

ASDS 2020 October 9-11

Figure 6. Human COL3A1 DNA (A) and transcript (B) levels in treated skin 48-hours after intradermal administration of KB301 to young (6-8 weeks old) and aged (13 months old) mice.

ACKNOWLEDGEMENTS

We kindly thank Jennifer Patton for all her work on the *in vivo* studies presented here.

